Sacrificial template-directed fabrication of superparamagnetic polymer microcontainers for pH-activated controlled release of Daunorubicin.
نویسندگان
چکیده
Magnetic pH-sensitive microcontainers were produced by a four-step process. The first step involves the synthesis of citrate-modified magnetic nanoparticles via the coprecipitation method. The second step consists of the encapsulation of magnetic nanoparticles in non-cross-linked poly(methacrylic acid) (PMAA) microspheres through distillation precipitation polymerization, resulting in a core/shell structure. The third step concerns the formation of a poly(N,N'-methylenebis(acrylamide)-co-mathacrylic acid) (P(MBAAm-co-MAA)) layer on the surface of magnetic PMAA microspheres by second distillation precipitation polymerization in order to produce a trilayer hybrid microsphere. The last step deals with the removal of PMAA layer in ethanol and formation of a stable P(MBAAm-co-MAA) microcontainer with magnetic nanoparticles entrapped inside the formed cavity. This process is simple and leads to the formation of superparamagnetic pH-sensitive microcontainers. The structure and properties of the magnetic microcontainers were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), and dynamic light scattering (DLS) to determine the functionalities of the hybrid structure. The magnetic pH-sensitive microcontainers were loaded with Daunorubicin and tested with respect to release rate at different pH values in order to evaluate their functionality as controlled release system.
منابع مشابه
Core-shell magnetic pH-responsive vehicle for delivery of poorly water-soluble rosuvastatin
Objective(s): Development of an oral sustained-controlled release vehicle which, slowly releases the drug and maintains an effective drug concentration for a long time is aimed.Materials and Methods: A biodegradable magnetic polymeric drug delivery vehicle, using superparamagnetic iron oxide nanoparticles encapsulating by polyvinylpyrrolidone-block-polyethylene glycol-block-poly methacrylic aci...
متن کاملFabrication of Thermoresponsive Cross-Linked Poly(N-isopropylacrylamide) Nanocapsules and Silver Nanoparticle-Embedded Hybrid Capsules with Controlled Shell Thickness
Hollow polymeric nanocapsules have attracted great interest in recent years due to their broad applications in controlledrelease carriers, catalysis, nanoreactors, and encapsulation of guest molecules. Polymeric nanocapsules have been typically fabricated via the selfassembly of block copolymers, 5 polymerization within lipid vesicles, emulsion polymerization, 14 and the sacrificial core-templa...
متن کاملMagnetic nanoparticles grafted pH-responsive poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone as a nano-carrier for oral controlled delivery of atorvastatin
Objective(s): Researchers have intended to reformulate drugs so that they may be more safely used in human body. Polymer science and nanotechnology have great roles in this field. The aim of this paper is to introduce an efficient drug delivery vehicle which can perform both targeted and controlled antibiotic release using magnetic nanoparticles grafted pH-responsive polymer.<s...
متن کاملFeMn2O4 nanoparticles coated dual responsive temperature and pH-responsive polymer as a magnetic nano-carrier for controlled delivery of letrozole anti-cancer
Objective(s): For cancer cells, an efficient and selective drug delivery vehicle can remarkably improve therapeutic approaches. This paper focuses on the synthesis and characterization of magnetic MnFe2O4 NPs and their incorporation in a dual temperature and pH-responsive polymer, which can serve as an efficient drug carrier. Materials and Methods: MnFe2O4 NPs were synthesized by chemical co-pr...
متن کاملPoly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone coated Magnetic nanoparticles as a pH-responsive magnetic Nano-carrier for controlled delivery of antibiotics
Objective(s): Pharmaceutical industries are leading to improved medications that can target diseases more effectively and precisely. Researchers have intended to reformulate drugs so that they may be more safely used in human body. The more targeted a drug is, the lower its chance of triggering drug resistance, a cautionary concern surrounding the use of broad-spectrum antibiotics. The aim of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 27 13 شماره
صفحات -
تاریخ انتشار 2011